DeepProf: Performance Analysis for Deep Learning Applications via Mining GPU Execution Patterns
نویسندگان
چکیده
Deep learning applications are computationintensive and often employ GPU as the underlying computing devices. Deep learning frameworks provide powerful programming interfaces, but the gap between source codes and practical GPU operations make it difficult to analyze the performance of deep learning applications. In this paper, through examing the features of GPU traces and deep learning applications, we use the suffix tree structure to extract the repeated patten in GPU traces. Performance analysis graphs can be generated from the preprocessed GPU traces. We further present DeepProf, a novel tool to automatically process GPU traces and generate performance analysis reports for deep learning applications. Empirical study verifies the effectiveness of DeepProf in performance analysis and diagnosis. We also find out some interesting properties of Tensorflow, which can be used to guide the deep learning system setup.
منابع مشابه
Parallel Optimized Algorithm for Apriori Association Rule Mining on Graphics Processing Unit with Compute Unified Device Architecture (CUDA)
Parallel computing is a form of computation in which many calculations are carried out simultaneously, operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently .Now GPU(Graphics Processor Unit) has taken a major role in high performance computing for general purpose applications. Compute Unified Device Architecture (CUDA) programm...
متن کاملGPU Taint Tracking
Dynamic tainting tracks the influence of certain inputs (taint sources) through execution and it is a powerful tool for information flow analysis and security. Taint tracking has primarily targeted CPU program executions. Motivated by recent recognition of information leaking in GPU memory and GPU-resident malware, this paper presents the first design and prototype implementation of a taint tra...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملSimilarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملDeepDSL: A Compilation-based Domain-Specific Language for Deep Learning
In recent years, Deep Learning (DL) has found great success in domains such as multimedia understanding. However, the complex nature of multimedia data makes it difficult to develop DL-based software. The state-of-the-art tools, such as Caffe, TensorFlow, Torch7, and CNTK, while are successful in their applicable domains, are programming libraries with fixed user interface, internal representat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.03750 شماره
صفحات -
تاریخ انتشار 2017